
Introduction to Git

Graeme Geldenhuys

2009-02-20

If you are a developer paying attention to recent trends, it is hard to 
ignore the recent surge of interest in distributed version control sys-
tems (DVCS). Git is one such open source system and is designed to 
handle anything from small to large projects with speed and efficiency 
in  mind.  This article  is an introduction to Git,  which will  show you 
some basic Git commands and tools  so you can get started working 
in your own Git repository.

Concepts and History
Lets start by giving a brief summary of what a Version Control System (VCS) is. A VCS 
is a system that tracks changes to files. The files and its changes are stored in a reposit-
ory. The repository in simple terms is a database of changes. You also have a working 
tree which is the files or source code living in the operating system's file system. It is 
these files that the developer edits and the repository tracks.

There are two types or version control systems: centralized version control systems and 
distributed version control systems.

Centralized version control system uses a Client/Server approach. There is a single re-
pository stored on the server which holds the complete history of the files. You then 
have multiple clients accessing the repository on the server. The clients each have a 
working tree and a single revision of the files. The main problems with a centralized 
version control system is that it is a single point of failure and can be a performance bot-
tleneck if many clients access the server simultaneously or you have a slow network 
connection.

A distributed version control system is decentralized and any client can be a server. 
Each repository holds the complete history of the files. Disconnected operations can 
also be handled even if you are not connected to a network, because the client holds the 
repository and working tree. There is no single point of failure. If one server goes down, 
other clients can simply pull changes from other servers. Backups are trivial, because 
everybody has a complete repository with full history. Micro or local commits are also 
allowed and doesn't affect other users by breaking an automated build system. So you 

1



can commit your local changes at the end of a working day, even though those feature 
are not 100% complete yet.

Git1 is an example of a Distributed Version Control System (DVCS) created by Linus 
Torvalds2. The Linux Kernel project started using a commercial DVCS created by Bit-
Move and was called BitKeeper. This was back in 2002. On the 6 April 2005 there was 
some disagreements and licensing issues, so BitMover revoked the free licenses given 
to the Linux Kernel project. Linus decided on trying the Monotone project as a reposit-
ory, but it was extremely slow. It is said that Linus started working on Git while he was 
waiting for Monotone to import the Linux kernel history. On the 18 April 2005 Git was 
already able to merge branches. By 16 June 2005 Git became the official version control 
system for the Linux Kernel project. Since then many more developers started working 
on Git and improving it.

In the beginning it was very hard to use Git and there was hardly any documentation. 
The Git developers started noticing all the complaints from new users about this issue. 
On the 15 February 2007 Git version 1.5 was released. This was a huge usability effort, 
and probably the first real version of Git than new and experienced users could use. Git 
was a lot more user friendly and had decent documentation added. The latest stable ver-
sion of Git is currently at version 1.6.1.3.

General VCS operations
There are four major categories of command operations in any Version Control System. 
These categories are Bootstap, Modify, Information and Reference.

Bootstap:

This covers commands to create a repository or get you working on a repository. It 
should have similar commands as follows:

• init: Some way to initializes the history database or repository.

• checkout: Gets the files of a specific commit out of the repository. This then allows 
you to work with those files.

• switching branches: Allows you to switch between branches so you can work on dif-
ferent files or features in your project.

Modify:

This category is for commands that modify the staging area or repository.

• add, delete or rename: As these names suggest, they allow you to add files to a repos-
itory, delete files from a repository or rename files in a repository.

• commit: This adds any changes that were staged into a repository.

Information:

This category of commands are for querying information from a repository.

• status: There will be some command to retrieve the status of the working tree. It will 
show things like what files have been added, deleted or modified.

1 Git homepage: http://git-scm.com/
2 Linus Torvalds - http://en.wikipedia.org/wiki/Linus_Torvalds

2



• diff: View differences between commits and will normally give you a patch output. 

• log: Query the historical changes in the repository

Reference:

These are commands that manages or creates tags and branches.

• tag: Marks a specific commit with a tag indicating a important state in the repository.

• branch: Create or delete branches giving alternative paths of development.

So these are all general features you will find in most version control systems. In this 
article I will cover all these features, and show you how to execute them using the Git 
version control system.

Installation
Currently I am using Ubuntu Linux 7.10 on my work PC which includes Git version 
1.5.2.5 in the apt repositories. I want to demonstrate newer features of Git, as some of 
those features were only introduced in laters versions of Git.  So rather that use the Git 
release from the apt repository, I chose to install the latest stable Git from source code. 
So for this article I am using version 1.6.1.3 which is the latest stable release.

First we need to download the latest source tarball, unpack it and configure it for com-
pilation.  Please note that in this  article  I  prefix an actual command as typed into a 
terminal with a $ sign prefix. So, to get the source and configure it we do the following 
in a terminal window:

$ cd /tmp
$ wget 
http://kernel.org/pub/software/scm/git/git-1.6.1.3.tar.bz2
$ tar xvfj ./git-1.6.1.3.tar.bz2
$ cd git-1.6.1.3/
$ ./configure

Now to compile Git you can execute the following command.

$ make all

This will build the Git executables, but exclude the building of the documentation. The 
documentation requires a few external tools like  asciidoc and  xmlto which are not al-
ways available on all distros. If you do have the required dependencies, you can build 
the documentation by executing the following command:

$ make doc

You don't always need to install Git to be able to run it. You can run it directly from the 
directory you compiled it in. Git requires various paths to be able to find it's own tools 
and scripts. The following environment variables need to be setup for this to work.

3



GIT_EXEC_PATH=`pwd` 
PATH=`pwd`:$PATH 
GITPERLLIB=`pwd`/perl/blib/lib 
export GIT_EXEC_PATH PATH GITPERLLIB

Alternatively, if you want to install the newly compiled version of Git you need to ex-
ecute the following as root user.

$ make install install-doc install-html

The default installation is to /usr/local/ directory. For more information on the in-
stallation options and instructions, see the INSTALL file included in the Git tarball.

Now to confirm that the installation went well we can change to a different directory - 
for example the users $HOME directory and execute the following command to see if 
we have the correct version.

$ git --version
git version 1.6.1.3

Overview of Git
If you are currently using other source control systems like SubVersion or CVS, then 
Git needs some further explanation simply because it is slightly different to other sys-
tems and what you will be used to. The follows is a quick overview of the terminology 
used when working with Git and to help you understand the information later on in this 
article.

In Figure 1 we show a history graph of a sample repository. Each square block repres-
ents a commit with a revision number assigned to them. We use the letters A through G 
for simplicity and to show the order in which they occurred, when in actual fact Git gen-
erates  a  unique  40-hexdigit  SHA1  hash  for  each  commit.  No  two  commits  in  a 
repository will ever have the same SHA1 value. The arrows represent the relationship 
with another commit. They point to one or more parent commits. The three trapezoids 
pointing to commits D, E and G represent branches. The default development path is 
normally called master. Any alternative paths of development are called branches. In 
this case we have three branches called topic_a, testing and release.

The elongated pentagons with the text v1.0 and v1.2 represent Tags in the repository. 
A tag is like a read-only branch and indicates an important state in the repository - like 
when you created a release for your software. Branches differ from Tags in the sense 
that Branches follow the path of development. If we were working in the  topic_a 
branch and added a new commit H, then the topic_a branch will advance and point to 
H and not G. On the other hand, a tag gets assigned to a specific commit and will 
forever point to that exact commit.

In Git there is a concept of a HEAD. A HEAD is a pointer to a Branch (most of the time) 
and represents the current commit checked out in your working tree. If you look at Fig-
ure 1 again, you will see we have HEAD pointing to  topic_a, which means we have 
commit G checked out in our working tree.

4



Figure 2 represents the movement of data in a Git repository, including the related Git 
commands to accomplish that. The following section will describe the image in more 
detail.

First we have the Repository where the history or metadata of the files your are tracking 
are stored. Think of a repository as a database of changes. This is also where some con-
figuration information for Git is stored. Next we have the Index, which is a staging area 
and contains information about what you want to commit in your next commit. Then fi-
nally we have a Working Tree which is the actual files and directories on disk that you 
can see. These are the files you will create and edit.

5

Figure 1: Repository history and data



The process of moving the changes from the Working Tree to the Index is called  sta-
ging. You will use commands like add, remove,  rename etc. to accomplish this task. 
The next part is moving those staged changes from the Index into the Repository. This is 
called committing and you will use a command called commit to do this.

So far these were all commands to get information into the repository. Now we also 
have the reverse of that process, getting information out of the repository. You will use 
commands like checkout, read-tree and reset to update the Index. We also have 
commands that update the Working Tree, and use commands like checkout,  check-
out-index and reset.

Another difference compared to SubVersion, is that unlike SubVersion which has a .svn 
directory in the top level directory and every sub-directory of your project, Git has only 
a single  .git directory in the top level or root directory of your project. This directory 
contains the history, metadata and various git configuration files.

Most of the files inside the .git directory are not very important to us, but there are a few 
exceptions I will quickly explain.

6

Figure 2: Git data transport



.git/config

This is a per repository configuration file where you can set certain parameters and we 
will look at a few of those later.

.git/description

This file describes the project in whatever language - English, German etc... I believe 
this file only gets used by gitweb which is a program that allows you to view the git re-
positories via a web browser.

.git/info/exclude

This is a file you can edit and insert patterns of files you want Git to ignore, so Git does 
not put them in the repository. For example, if you are a Free Pascal developer, you 
would want Git to ignore *.ppu and *.o files.

Git Commands
All Git commands have the following consistent syntax:

$ git <global options> <command> <command options>

There are currently over 137 Git commands. This is quite overwhelming for users com-
ing  from  systems  like  CVS  or  SubVersion.  Luckily  Git  now  has  very  good 
documentation for all those commands, but for most day-to-day work the majority of 
users will only use around 20 of those commands. To see a list of those 20 or so com-
mon commands you can execute the following.

$ git help

All Git commands will also answer to the -h parameter giving you a brief help output 
or syntax for that command. For more detailed help on commands you can access the 
manual pages. Since version 1.5 the help is really good. They give a lot of information 
and examples on how to use any of the available commands. You can access the manual 
pages in any of the following ways.

$ man git-<command>
$ git help <command>
$ git <command> --help

Earlier I mentioned the .git/config configuration file. This configuration file applies to a 
specific  Git  repository. Sometimes you would also like global  configuration options 
which will be applied to all your Git repositories. The file used for storing such informa-
tion can be found in the $HOME/.gitconfig file.

You can edit the information in that file via a text editor or via the git config com-
mand. For example, the minimum requirement for using Git, is to tell Git who you are. 

7



Your name and email address. The reason Git needs that information is because that is 
what Git inserts into the commit history. You can set that information as follows:

$ git config --global user.name "Your Name"
$ git config --global user.email somename@somedomain.com

There are a few other options you can also set. One very handy option is to tell Git to 
use colour when it generates output.

$ git config --global color.ui auto

Another very nice option is to tell Git to use the pager less, but only if the output is 
more that what will fit into your screen. So if you have a 25 row terminal window and 
Git generates 24 rows of output, the pager will not be used. Any output over 25 lines, 
and Git will use the pager so you can scroll the output. Another handy option is to tell 
Git what editor to use when you need to write commit messages.

$ git config --global core.pager "less -FRSX"
$ git config --global core.editor mcedit

So now that we have the basic configuration out of the way, it is time we start working 
in a actual Git repository. So lets start by creating a Git repository. First we need to 
change into our project directory and execute the following command in the top level 
directory of that project

$ git init

This will initialize a Git repository and create the .git directory. At this point Git doesn't 
know about any of our project files. So for our first commit we need to stage some files 
which will be included in our first commit.

$ git add <filename>
$ git add .

The first example specifies one or more files to be added to the staging area also known 
as Index. Instead of specifying a specific file you can also specify wildcards like *.c to 
add all C source code files. The second method shown is to specify a . (dot) instead of a 
file name. This will tell Git to recursively add all files in our project directory that are 
not ignored by the exclude patterns setup in the  .git/info/exclude file. As a matter of in-
terest, there is another way to specify exclude patterns and that is via the .gitignore file 
which is in the top level directory of your project. The difference between the two are 
quite simple. All files in the .git directory are not tracked by Git, but the .gitignore file 
located in the top level directory can be tracked. If you wanted everybody working on 
the project to ignore the same set of files, it is recommended that you add those exclude 
patterns to the .gitignore file and tell Git to add that file to the repository. Any personal 
preferences you might have can be added to the .git/info/exclude file and will not affect 
anybody else's exclude patterns.

It is important to note that the add command has two uses. Firstly it can tell Git to add 
files into the repository that was not tracked before. The second usage is when you have 

8



modified a few files, but you only want to commit a specific file's changes in the next 
commit.

To remove files from the repository you execute the following

$ git rm <filename>

You can even tell Git to rename files while it continues tracking its changes.

$ git mv <old filename> <new filename>

Now we can finally commit our staged changes by running the following:

$ git commit -m "some commit message"

We can also specify the  -a parameter which will  tell  Git to commit all  files that it 
tracked before and that contains changes, even though those files have not been expli-
citly staged first. This will not commit newly created files that Git was not tracking yet 
or files you deleted without telling Git about the deleted files. This is similar in a way to 
what SubVersion's svn ci command does.

If we want to inspect the repository we can use the git status command. This will 
show us all the staged, unstaged and untracked files. Figure 3 show some sample output 
of the status command.

You can see in Figure 3 that file1.txt is a tracked file and has been staged for the next 
commit. The second item is file2.txt which is also a tracked file, but has not been staged 
for the next commit. The last file in the screenshot,  newfile.txt, is a newly created file 
that is not tracked by Git yet and so is not staged either. As you can see from the output, 
Git gives clear and user friendly messages to help the user by even giving sample com-

9

Figure 3: Sample 'git status' output.



mands to use. If we had to do a commit using  git commit, then only the one file, 
file1.txt's changes would be committed. But if we executed git commit -a, then all 
changes to files  file1.txt and  file2.txt would be committed. Because  newfile.txt is not 
tracked by Git yet, none of its changes would be added to the repository.

Another way of inspecting the repository is by using the diff command. The following 
two examples show the usage of the diff command and the differences in output when 
using different command options.

In the first example we used the git diff command by itself.

$ git diff
diff --git a/file2.txt b/file2.txt 
index a7e2414..8a01ab9 100644 
--- a/file2.txt 
+++ b/file2.txt 
@@ -1 +1,2 @@ 
 The second file 
+With some new changes. 
\ No newline at end of file

This shows us the changes between the Index and the Working Tree. So in this case it 
shows us the changes in file2.txt which is a tracked file but its changes have not been 
staged yet. Remember, we are working with the files shown in Figure 3.

In the second example we used the git diff --staged command. This shows us the 
changes between HEAD and Index.

$ git diff --staged 
diff --git a/file1.txt b/file1.txt 
index e377738..6218780 100644 
--- a/file1.txt 
+++ b/file1.txt 
@@ -2,4 +2,4 @@ Hello World! 
 ------------ 
 
 Now what? 
- 
+Some new changes... 

In this case Git shows us the changes in file1.txt which is a tracked file and its changes 
have already been staged. We can also execute git diff HEAD which will then show 
us all changes between HEAD and Working Tree. This will be a combination of the pre-
vious two commands. Another way of using the diff command is to ask for the changes 
between two commits. The manual pages will give you a lot more information and ex-
amples on this topic.

You will also have noticed that the output generated by the diff command is by default 
in the unified diff format which is a standard patch style format. Lines preceded by a 
minus sign are deleted lines. Lines preceded by a plus sign are changed or added lines. 
Git can also generate other diff formats for you.

I briefly showed some diff commands, but when you start using diff more often, you will 
need to start referencing various objects in the Git repository. For example, the differ-
ence between two commits or changes between two branches etc.. There are many ways 

10



you can reference objects in Git. This is quite a powerful feature of Git and the syntax is 
very flexible. The following table lists some reference examples you can use.

What to reference? Text used

full  commit  id  (SHA1  hash) 
of a specific commit

87afbbf488d4397a2a6b294abe66f627bae86ee1

partial or short hash as long as 
in is unique

87afbbf

local branch by name master

remote branch origin/master

tag v1.5

by a commit message. Git will 
search for "some text" and use 
the  first  commit  id  with  that 
text.

":/some text"

current checkout HEAD

commit before HEAD HEAD^     or    HEAD~1

4 commits before HEAD HEAD^^^^   or   HEAD~4

the HEAD of yesterday HEAD@{yesterday}

HEAD at 1st February HEAD@{1.February}   or   HEAD@{February.1}

yesterday on another branch MyBranchA@{yesterday}

on master a few changes ago master@{3}

Table 1: Various syntax to reference a commit object

Another way of looking at changes is to use the show command. If you run git show 
by itself, it will show you the changes of the last commit.

$ git show
commit 3e05aa2a9e897338c7821d61ef9065a320504a41 
Author: Graeme Geldenhuys <graeme@mastermaths.co.za> 
Date:   Tue Feb 24 13:13:04 2009 +0200 
 
    Some minor changes 
 
diff --git a/file1.txt b/file1.txt 
index 3b18e51..e377738 100644 
--- a/file1.txt 
+++ b/file1.txt 
@@ -1 +1,5 @@ 
-hello world 
+Hello World! 
+------------ 
+ 
+Now what? 
+ 

11

mailto:graeme@mastermaths.co.za


There is also a short form to show less information. With our small example above, it 
does not make much sense because we only modified one file in that commit and had a 
small amount of changes. Now if the previous commit affected a lot of files with many 
changes, the git show command output would have spanned many lines and the pager 
would have been required to view everything. Executing the git show --stat com-
mand shows only the summary information of a commit.

$ git show --stat 
commit 3e05aa2a9e897338c7821d61ef9065a320504a41 
Author: Graeme Geldenhuys <graeme@mastermaths.co.za> 
Date:   Tue Feb 24 13:13:04 2009 +0200 
 
    Some minor changes 
 
 file1.txt |    6 +++++- 
 1 files changed, 5 insertions(+), 1 deletions(-)

Here you can see that instead of showing you the patch information, it only tells you 
which files changed, the amount of changes per file and the number of insertions and 
number of deletions. This is a nice way of getting an overview of what a specific com-
mit has done.

The show command also has a --name-status command option which generates out-
put very similar to what SubVersion's svn client does.

$ git show --name-status 
commit 1b71b73a33cdc432d5ed5dcf06e13e2936a9c9b4 
Author: Graeme Geldenhuys <graemeg@gmail.com> 
Date:   Fri Feb 27 23:06:37 2009 +0200 
 
    various other changes. 
 
M       file1.txt 
D       file2.txt 
A       newfile.txt

Here M is for modified, D is for deleted and A is for added. As shown below, the show 
command can also reference any other commit in the repository using the same object 
references as listed in Table 1 a bit earlier. 

$ git show HEAD@{4}

Something you will do quite often is looking at the history log of the repository. Track-
ing changes of a file, or the last set amount of changes in the repository etc. Executing 
git log on its own outputs the commit log of the current branch, from newest to old-
est. As the following default output shows, you get the commit id, author of the patch, 
date of the commit and the commit message.

12

mailto:graemeg@gmail.com
mailto:graeme@mastermaths.co.za


$ git log 
commit 1b71b73a33cdc432d5ed5dcf06e13e2936a9c9b4 
Author: Graeme Geldenhuys <graemeg@gmail.com> 
Date:   Fri Feb 27 23:06:37 2009 +0200 

    various other changes. 
 
commit 3e05aa2a9e897338c7821d61ef9065a320504a41 
Author: Graeme Geldenhuys <graeme@mastermaths.co.za> 
Date:   Tue Feb 24 13:13:04 2009 +0200 
 
    Some minor changes 
 
commit 3a297c8e8829d9f1702820e33d6691a4c8a3f4aa 
Author: Graeme Geldenhuys <graeme@mastermaths.co.za> 
Date:   Tue Feb 24 13:10:24 2009 +0200 
 
    The second file 
 :

As with the diff command, the log command can also handle various object references 
to filter the output more precisely. Table 1 lists various methods of references commit 
objects. Here are a few more examples using the log command.

$ git log <tag name>..<branch name>

Here we specified a range, which means Git will show all log entries from the one com-
mit to the other commit. In this case, we specified a tag name and a branch name.

$ git log HEAD~5..

Here we left out the second part of the commit range which means Git defaults to the 
HEAD of the currently checked out branch. In the above example, we specified a range, 
but did not explicitly mention the ending range. Git will then default to HEAD. So this 
command will show all log entries from five commits back to the newest HEAD com-
mit.

$ git log -5

This line will show the five most recent commits, from newest to oldest. The -5 limits 
the log to only five commits, but any number can be specified.

$ git log --since="Jan 1" --until="Feb 1"

Here it shows that we can even use a date range to list all the log entries from one date 
to another.

We are not limited to only displaying a linear commit log. We can also use a format to 
filter out certain commit logs.

$ git log --author=Graeme

This will run through the logs and only display log entries where the author's name 

13

mailto:graeme@mastermaths.co.za
mailto:graeme@mastermaths.co.za
mailto:graemeg@gmail.com


starts with "Graeme". Another way to filter the commit log is by grep'ing through the 
commit message.

$ git log --grep="*sometext"

We can also grep through the actual changes, not just the commit message. So if we 
know somebody made a change to a specific piece of code we can specify a section of 
that code and Git will output all commit logs where changes were made containing that 
code. You can also use the built-in regular expression engine in Git to help find the 
commits you are looking for - this is called pickaxe.

$ git log -S"some code change"
$ git log --pickaxe-regex -S"some.*code.*change"

This is one of the truly amazing features in Git. It really speeds up the process of find-
ing specific commits out of thousands.

Obviously Git also supports a per file option. So you can list all commits that only relate 
to a specific file.

$ git log -- some/path/to/file

Just to give you a quick example of a more advanced log command. The following com-
mand generates a text based revision history graph based on all branches. This is one 
way to visualize the revision tree. As you can see in the command below, we asked Git 
to make the dates relative to the current date and we specified a custom formatting of 
the output. We even specified what colours to use in the terminal. The last thing we told 
Git to do, was to abbreviate the SHA1 id's so it only shows the first 7 characters of the 
full 40 character SHA1.

$ git log --all --graph --date=relative \
--pretty=format:"%Cred%h%Creset — %s %Cgreen(%cr)%Creset" \
--abbrev-commit

And here is some sample output of this command.

The newest commit is at the top. It also shows us that we have 2 branches which divert 
from the master branch. For more details on this, you can reference the manual pages 
which explain all the options in more detail.

Speaking of branches... Branching and Merging are very important topics with Git. Un-
like other source control systems like CVS or SubVersion where branching is a costly 
process and merging is very complicated, Git made huge improvements to make this as 

14



effortless as possible. Under Git, branching is very lightweight to create and destroy. It 
is recommended to make branches for every feature you are working on and once that 
feature is complete and merged back into the master branch, you simply delete that fea-
ture branch.

The reason they spent so much time on improving branching and merging is because it 
happens so frequent in a distributed development environment. You could have pulled 
code from one repository. At the same time somebody else also pulled those changes, 
then that somebody else implemented a new feature and pushed it back to the original 
repository. After you completed your feature, you need to first pull all the new changes 
to your repository, which will  now cause a merging of changes, then only can your 
changes be pushed to the original repository. Branching and Merging become common 
tasks when working under Git.

So how to we create a branch? Simply by running the following command.

$ git branch <branch name> <optional commit>

<branch name> is the name you want to give to the new branch. If you do not specify a 
specific commit, then the branch will be based on your current checked-out HEAD. The 
next logical thing would be to switch branches. Again, this is very easy to do, by simply 
telling git to checkout whatever branch you specified.

$ git checkout <branch name>

You can also do both creating and switching to that new branch in one command as fol-
lows.

$ git checkout -b <branch name> <optional commit>

Now lets say we created our new MyNewFeatureA branch and implemented this new 
feature. What we now want to do is merge that new feature back into the stable master 
branch. The way we do that is by calling the  git merge command. The workflow 
would be as follows.

$git checkout -b MyNewFeatureA master
[...code...commit...code...commit...code...commit]
$git checkout master
$git merge MyNewFeatureA

The merge command also allows you to merge more that one branch at the same time 
and is called an octopus merge. That is a more advance topic I will not be covering here, 
but I just wanted to highlight that it is a possibility.

As with any other version control system, when you do merging you stand a chance of 
getting conflicts. Git will mark the conflicting lines in the specific files in a very similar 
way to what SubVersion does. Resolving such conflicts are a manual process as with all 
other version control systems. Again, the manual pages cover this in a lot more depth if 
you want to read up on it.

The last command I will cover in this article is cloning. This is probably also the first 
command you will be using when working with Git and other remote projects. The syn-

15



tax for cloning is as follows:

$ git clone <remote repos> <new directory>

What cloning a repository does is as follows: It first initializes a new empty repository 
on your local system. It will then replicate the remote repository and populate your local 
repository with all the information from the remote repository. By default, it will then 
checkout the master branch in your new local repository.

When cloning a repository you need to specify the repository's URL. The following 
table summarizes some of the Git URL's.

Protocol Example

Local repositories file:///home/graemeg/git/project.git/

/home/graemeg/git/project.git/

HTTP protocol http://git.mydomain.com/project.git/

Native Git protocol git://git.mydomain.com/project.git/

SSH protocol ssh://graemeg@mydomain.com/~git/project.git/

graemeg@mydomain.com/~git/project.git/

Table 2: Examples of Git URLs

Local repositories are handy for experimental work on your own projects. As far as I 
know, using the HTTP is only read-only access - you cannot push changes via the HTTP 
protocol. The HTTP protocal is handy to publish some public projects though. The nat-
ive Git protocol is a lot more optimized for network traffic and is the recommended 
protocol to use. Git via the SSH protocol is also popular due to obvious security fea-
tures.

GUI tools
By default Git comes with two GUI tools, but there are probably more somewhere on 
the internet. These two tools fairly popular with Git users, but they are not a require-
ment to using Git. I am also fairly sure that as time goes by, more and more GUI tools 
will emerge. The first tool I am going to talk about is called gitk, which is a way to visu-
alize the revision tree. You can start the program by running  gitk from inside your 
repository.

16



As you can see from the screenshot in Figure 4, we have the revision tree in the top left 
corner. The dots in the tree represent different states. The yellow dot is the currently 
checked out HEAD. The blue dots are previously committed commits. The red dot rep-
resents local changes that have not been staged yet.  The green blocks represent  the 
various branches with their names. The green box with the bold writing is the currently 
checked out branch which HEAD points to. The lines between the dots represent the 
parent commits. The yellow box at the bottom of the tree represents a Tag with the tag 
name - in this case it's named v0.1. To the right of the tree is the name of the commit 
author and the time stamp that that commit was made.

The bottom half of the window represents the commit being highlighted in the tree. On 
the left side we can see the commit details (author, committer, date, parent commit etc) 
and the commit message. Below that we see all the changes that were made in that com-
mit to the various files.

In the View menu you can customize the view to only display a set amount of commits, 
or filter on a author etc... All the same things we covered earlier in this article, but this 
time from a GUI tool.

The second GUI tool is called Git Gui, which allows you to perform trivial tasks from a 
GUI. For example you can stage or unstage changes. Add or remove files, make com-
mits etc. This is a handy tool for people that are more comfortable with GUI tools than 
the command line. You can start this tool by running git gui from inside your Git re-
pository.

17

Figure 4: gitk showing our revision tree.



Just below the menu bar it tells us in which branch we are. In this case we are in the 
master branch. At the left top in the window it shows us all the unstaged files in our 
Working Tree. Here it shows us that changes have been made to the tracked file called 
newfile.txt, but we haven't staged this change yet, so it will not be part of the next com-
mit.

Below that window is the same thing, but this time it shows us all the staged changes. 
Changes that are in our Index and that will be in the next commit.

The top right window shows us the changes based on the selected file in the Unstaged or 
Staged windows. In this case it shows us the changes of the highlighted unstaged file 
called newfile.txt.

The bottom right windows is where you can type in your commit message and do some 
basic actions like Commit, Push etc...

One very nice feature of Git Gui is how easy it makes partial staged commits. For ex-
ample, say you have a file with Object Pascal source code. Now lets say three changes 
have been made in different locations in that source file. One of those changes were just 
a temporary change with debug information and you did not actually want to commit 
that change. Git does not force you to stage and commit that whole file. For example, 
you can stage the whole file with all its changes, then use Git Gui to show you all the 
changes in the top right window. Then select the change you did not mean to commit. 
Right click and select "Unstage Hunk", and it will unstage only that change. So when 
you do a commit, only two out of the three changes in that file will be committed.

Final thoughts
I hope that you have learned something about the differences between client-server and 
distributed version control systems. I also hope that this article has made you more curi-
ous about Git and that it has convinced you to try it out for yourself.

18

Figure 5: Git Gui showing one unstaged change.



This article covered only the basics of what Git has to offer, but it should have been 
enough to get you going with your own Git repository. There are many more options to 
all the commands I have shown you, and I urge you to read the manual pages to get to 
know the rest of the options and commands better. The Git website also has a lot of ex-
tra  documentation and tutorials  you can follow. I  hope you found this  introduction 
useful and enjoy learning and using Git as much as I did.

19


	Concepts and History
	General VCS operations
	Installation
	Overview of Git
	Git Commands
	GUI tools
	Final thoughts

